坐标点(0,1)**一个完美的分类器,它将所有的样本都正确分类。roc曲线越接近左上角,该分类器的性能越好。从图9可以看出,该方案的roc曲线非常接近左上角,性能较优。另外,前端融合模型的auc值为。(5)后端融合后端融合的架构如图10所示,后端融合方式用三种模态的特征分别训练神经网络模型,然后进行决策融合,隐藏层的***函数为relu,输出层的***函数是sigmoid,中间使用dropout层进行正则化,防止过拟合,优化器(optimizer)采用的是adagrad,batch_size是40。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,后端融合模型的准确率变化曲线如图11所示,模型的对数损失变化曲线如图12所示。从图11和图12可以看出,当epoch值从0增加到5过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从5到50的过程中,前端融合模型的训练准确率和验证准确率小幅提高,训练对数损失和验证对数损失缓慢下降;综合分析图11和图12的准确率和对数损失变化曲线,选取epoch的较优值为40。确定模型的训练迭代数为40后,进行了10折交叉验证实验。跨设备测试报告指出平板端UI元素存在比例失调问题。西安软件评测中心
针对cma和cnas第三方软件测试机构的资质,客户在确定合作前需要同时确认资质的有效期,因为软件测试资质都是有一定有效期的,如果软件测试公司在业务开展的过程中有违规或者不受认可的操作和行为,有可能会被吊销资质执照,这一点需要特别注意。第三,软件测试机构的资质所涵盖的业务参数,通常来讲,软件测试报告一般针对软件的八大参数进行测试,包括软件功能测试、软件性能测试、软件信息安全测试、软件兼容性测试、软件可靠性测试、软件稳定性测试、软件可移植测试、软件易用性测试。这几个参数在cma或者cnas的官方网站都可以进行查询和确认第四,软件测试机构或者公司的本身信用背景,那么用户可以去检查一下公司的信用记录,是否有不良的投诉或者法律纠纷,可以确保第三方软件测试机构出具的软件测试报告的效力也没有问题。那么,总而言之,找一家靠谱的第三方软件测试机构还是需要用户从自己的软件测试业务需求场景出发,认真仔细比较资质许可的正规性,然后可以完成愉快的合作和软件测试报告的交付。沈阳软件检测报告厂家电话策科技助力教育行业:数字化教学的创新应用 。
先将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图分别输入至一个深度神经网络中抽取高等特征表示,然后合并抽取的高等特征表示并将其作为下一个深度神经网络的输入进行模型训练,得到多模态深度集成模型。进一步的,所述多模态深度集成模型的隐藏层的***函数采用relu,输出层的***函数采用sigmoid,中间使用dropout层进行正则化,优化器采用adagrad。进一步的,所述训练得到的多模态深度集成模型中,用于抽取dll和api信息特征视图的深度神经网络包含3个隐含层,且3个隐含层中间间隔设置有dropout层;用于抽取格式信息特征视图的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;用于抽取字节码n-grams特征视图的深度神经网络包含4个隐含层,且4个隐含层中间间隔设置有dropout层;用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,且2个隐含层中间设置有dropout层;所述dropout层的dropout率均等于。本发明实施例的有益效果是,提出了一种基于多模态深度学习的恶意软件检测方法,应用了多模态深度学习方法来融合dll和api、格式结构信息、字节码n-grams特征。
特征之间存在部分重叠,但特征类型间存在着互补,融合这些不同抽象层次的特征可更好的识别软件的真正性质。且恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测,但恶意软件很难同时伪造多个抽象层次的特征逃避检测。基于该观点,本发明实施例提出一种基于多模态深度学习的恶意软件检测方法,以实现对恶意软件的有效检测,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过前端融合、后端融合和中间融合这三种融合方式集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性,具体步骤如下:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图;统计当前软件样本的导入节中引用的dll和api,提取得到当前软件样本的二进制可执行文件的dll和api信息的特征表示。对当前软件样本的二进制可执行文件进行格式结构解析,并按照格式规范提取**该软件样本的格式结构信息,得到该软件样本的二进制可执行文件的pe格式结构信息的特征表示。覆盖软件功能与性能的多维度检测方案设计与实施!
且4个隐含层中间间隔设置有dropout层。用于输入合并抽取的高等特征表示的深度神经网络包含2个隐含层,其***个隐含层的神经元个数是64,第二个神经元的隐含层个数是10,且2个隐含层中间设置有dropout层。且所有dropout层的dropout率等于。本次实验使用了80%的样本训练,20%的样本验证,训练50个迭代以便于找到较优的epoch值。随着迭代数的增加,中间融合模型的准确率变化曲线如图17所示,模型的对数损失变化曲线如图18所示。从图17和图18可以看出,当epoch值从0增加到20过程中,模型的训练准确率和验证准确率快速提高,模型的训练对数损失和验证对数损失快速减少;当epoch值从30到50的过程中,中间融合模型的训练准确率和验证准确率基本保持不变,训练对数损失缓慢下降;综合分析图17和图18的准确率和对数损失变化曲线,选取epoch的较优值为30。确定模型的训练迭代数为30后,进行了10折交叉验证实验。中间融合模型的10折交叉验证的准确率是%,对数损失是,混淆矩阵如图19所示,规范化后的混淆矩阵如图20所示。中间融合模型的roc曲线如图21所示,auc值为,已经非常接近auc的**优值1。(7)实验结果比对为了综合评估本实施例提出融合方案的综合性能。专业机构认证该程序内存管理效率优于行业平均水平23%。合肥软件产品检测报告
5G 与物联网:深圳艾策的下一个技术前沿。西安软件评测中心
保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。西安软件评测中心
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。